1. (10 points) From the Theory of Thermodynamics the enthalpy (H) of a system is given by $H=U+P V$ where U is energy, P is pressure and V is volume. By making use of the combined First and Second Laws of Thermodynamics that $d U=T d S-P d V$ where S is entropy and T is temperature, find $d H$ in terms of temperature (T), entropy (S), pressure (P) and volume (V).
2. (10 points) Compute $\int_{C} \vec{F} \bullet d \vec{r}$ where C is the path generated by taking a wheel of radius \mathbf{b} units and placing a pen a units from the center (initially placed vertically beneath the center Figure 4) and rolling the wheel right through 2 revolutions \vec{F} is the force field equal to (\mathbf{x}, \mathbf{y}). Assume the x axis - horizontal, y vertical.
 integrals or calculator).
3. (20 points). A boat race is to take place on a river several miles wide that flows from west to east. The current in the river is proportional to the square of the distance in miles from the southern bank at a rate of $\mathbf{1 0} \mathbf{~ m p h}$ per mile. Prior to the start of the race, a wind develops from the southeast. The wind speed at a point (x, y) on the river has magnitude $\mathrm{x}^{2}+\mathrm{y}^{2} \mathrm{mph}$.
a. What is the resulting force field for a boat at any point on the river?
b. What is the work done traveling clockwise circular path of radius 1 centered at $(1,0)$ from the point $(0,0)$ to the point $(2,0)$?
4. (10 points) Let the density of particles in space be given by $\rho(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}$ particles per meter ${ }^{3}$. Find the total number of particles in the region bounded by the $x z$ plane, $x y$ plane, the plane $y=x$ and the surface $x^{2}+y^{2}+z^{2}=9$.
5. (10 points) Find $\iint_{R} f(r, \theta) r d r d \theta$ where R is the region in Figure 1 and $f(x, y)=x^{2} y+x y^{2}$. Polar coordinates required for all integrals..
6. (20 points) Let $f(x, y)=x y-x^{3}-y^{2}$
a. Find all relative extrema.
b. Find the absolute maximum and minimum in the region bounded by $y=x$ and $y=x^{2}$.

